

MINICURSOS DA ABRISCO 2017

"DE ASSOCIADO PARA ASSOCIADO"

Datas: 25 e 26 de novembro de 2017 (fim de semana do começo do Congresso ABRISCO 2017)

Cidade: Rio de Janeiro Local a ser anunciado

Programas e MiniCVs dos Instrutores:

Minicurso #	Programa	MiniCV do Instrutor
1 (4 hs)	 AVALIAÇÃO DE RISCO E DECISÃO BASEADA EM RISCO a. Objetivo: esclarecer os principais fatores que impactam uma avaliação de risco e os critérios influenciadores de decisões com base em risco, na busca de processos produtivos e empreendimentos mais seguros e confiáveis. b. Programa: Fundamentos de decisão baseada em risco – 30min Gerenciamento de riscos – 45min Manipulação de Dados Estatísticos e Critérios de Verificação – 30min Avaliação de Risco (Probabilidade e Consequências) – 30min Critérios de aceitação – 30min Estudo de caso – 30min Oportunidades de melhoria – 30min Obs: este treinamento já foi apresentado como Master Class em Congresso Internacional no RJ (Dez/2015) e Seminário na Pós-Graduação de Enga. de Segurança de Processo da PUC-RJ. 	CESAR NASCIMENTO - Executivo com mais de 30 anos de experiência nas áreas de Engenharia Química/Consultoria em Gerenciamento de Enga. de Segurança (SMS), Qualidade e Confiabilidade, com destaque no desenvolvimento e formação de pessoas, e gestão de sistemas complexos, em empresas internacionais e globais, em diferentes segmentos. - Eng. Químico pela UERJ (1984) - D.Sc. pela EQ/UFRJ - Trabalhou como Gerente e Consultor na Praxair/WMGI de 1993 a 2015 - Trabalhou de 1986 a 1993 na Ultratec Engenharia e de 84 a 86 na SB Engenharia - Atualmente é sócio e consultor sênior da SafetyTime Consultoria Ltda.
2 (4 hs)	 a. Objetivo: esclarecer sobre os diversos aspectos influenciadores da capacidade de observação humana, especialmente voltada para os aspectos de Segurança e a minimização de eventos incidentais. b. Programa: O que é observar? – 45min Aspectos sensoriais durante a observação, especialmente a visão – 1h45min Aspectos sociais e psicológicos que afetam a capacidade de observação – 45min Ferramentas e procedimentos que auxiliam a observação – 30min Obs: este treinamento já foi apresentado diversas vezes como capacitação técnica de diversos profissionais na Praxair. 	CESAR NASCIMENTO Ver acima.

3 (8 hs)

COMO REALIZAR AVALIAÇÕES QUALITATIVAS DE CONFIABILIDADE HUMANA EM ANÁLISES DE PROCESSO

Objetivo: Introduzir o emprego de ferramentas para avaliação do erro humano em atividades operacionais, auxiliando as organizações a melhorar a segurança e alcançar uma maior produtividade. Ao final do curso o aluno deverá ser capaz de construir e avaliar qualitativamente, e de forma metodológica, o erro humano em tarefas e sub tarefas e obter melhor desempenho no desenvolvimento de procedimentos e instruções operacionais

Programa:

- Introdução com David Embrey da Human Reliability
- 2. Erro humano
- 3. Classificação de erros humanos
- 4. Análise de tarefas (HTA)
- 5. Workshop de análise de tarefas: transferência de hidrocarbonetos para embarcação
- 6. Human HAZOP
- 7. Workshop para HAZOP Humano
- 8. Planejando análise QHRA
- 9. Workshop: Analise de um cenário de liberação de gás de emergência: HTA e PHEA
- 10. Discussão final

SARA LUCIA ZAED

Executiva com mais de trinta anos de experiência nas áreas de risco e confiabilidade humana, segurança de processo e meio ambiente Eng. Química pela UFF (1980) MS em Ciência dos Materiais e Metalurgia pela Puc/RJ (1984) Risk Analysis and Vulnerability Analysis, Arthur D. Little - Montreal – Canada (1989).

Segurança do Trabalho- PUC/RJ, Rio de Janeiro, Brasil, (1992)

Risco e confiabilidade Operacional, COPPE (2000),

Psicologia Social, Núcleo de Psicologia da Bahia, Salvador, Bahia, (2004). Confiabilidade Humana, University of Sheffield (2007)

Professora da Eng. Ciências dos Materiais e Metalurgia da PUC/RJ por 4 anos

Autora/Coautora de 25 artigos em congressos e revistas Diretora Operacional da ZAED Engenharia desde 2004, Atuando como Top Leader em Gerenciamento -PSM, Análise de Riscos, Confiabilidade Humana e Meio Ambiente. participando de mais de 280 projetos envolvendo uma variedade de tecnologias, para Mineração, Plantas de Aço, Plantas Petroquímicas, Agronegócios, Gases Industriais Plantas, Petróleo, Gás e Energia, Desempenho em atividades acadêmicas nos cursos de graduação e pós-graduação em Termodinâmica; Tratamento de Minério Mecânico. Representa a Human Reliability Associates, HRA na América do Sul.

4 (4 hs)

DEEP LEARNING FOR BIG DATA BASED PROGNOSTICS AND HEALTH MONITORING

- Internet of Things Based Prognostics and Health Management (PHM)
- The challenges of Big Data in PHM
- Why Deep Learning?
- Deep Convolutional Neural Networks Fault Diagnostics and Prognostics
 - Automatic feature extraction
 - Fault diagnosis and prognosis
 - Damage identification based on image processing
- Deep Generative Adversarial Networks for Autonomous Fault Diagnostics

O CURSO SERÁ EM PORTUGUÊS

ENRIQUE DROGUETT

- Eng. Químico pela UFBA
- MSc pela UFBA
- PhD pela Univ. of Maryland
- Professor da UFPE de 2000 a 2014
- Professor-Adjunto da Univ. of Maryland desde 2015
- Professor Associado da Universidade do Chile desde 2016
- Autor de mais de 200 trabalhos publicados em revistas e congressos internacionais
- Presidente da ABRISCO de 2012 a 2014
- Membro do Board of Directors da IAPSAM

5 (4 hs)

EMPREGO DE FERRAMENTAS GRATUITAS PARA SIMULAÇÃO DE CENÁRIOS ACIDENTAIS

 a. Objetivos: O presente curso visa introduzir o emprego das ferramentas ALOHA e MARPLOT como auxiliares no planejamento de repostas para acidentes químicos. Ao final do curso o aluno deverá ser capaz de construir e simular diferentes cenários acidentais envolvendo agentes químicos.

b. Programa:

- 1. Introdução e apresentação das ferramentas. Procedimentos de instalação dos softwares carga horária: 30 min
- 2. Modelagem Fenomenológica de Dispersão Atmosférica de Gases (Conceitos Básicos) - carga horária: 30 min
- Modelagem Fenomenológica de Incêndios Jet Fire, Pool Fire, Fire Ball (Conceitos Básicos) carga horária: 30 min
- 4. Indicadores Toxicológicos para Emergências (AEGL, ERPG, PAC, IPVS) carga horária: 30 min
- 5. Exemplo 1: simulação de cenário acidental envolvendo formação de nuvem tóxica carga horária 30 min
- Exemplo 2: simulação de cenário acidental envolvendo formação de nuvem inflamável carga horária 20 min
- Exemplo 3: simulação de cenário acidental envolvendo incêndio e explosão - carga horária
 40 min
- 8. Conclusões e Debate carga horária 30 min

CARLOS ANDRÉ VAZ JR.

- Engenheiro Químico e Engenheiro de Segurança do Trabalho com mestrado e doutorado na área de detecção de falhas em processos industriais pela UFRJ.
- Professor da Escola de Química da UFRJ desde 2011, atuando na área de segurança de processos.
- Ministra regularmente disciplinas de "Segurança de Processos e Prevenção de Perdas" e "Incêndios Industriais" para os cursos de Engenharia Química e Química Industrial da UFRJ.
- Atual coordenador do curso de Engenharia Química da UFRJ.

6 (4 hs)

ENGENHARIA DE CONFIABILIDADE

a. Objetivo

- Introduzir os conceitos básicos de engenharia de confiabilidade com enfoque em unidades industriais e na normalização.
- Técnicas mais utilizadas em engenharia de confiabilidade (FMEA/FMECA, RBDA, FTA, MKA, ETA, etc).
- Noções gerais sobre HRA, LCCA, RCM e RBI.
- Coleta e tratamento de dados, bancos de dados, ISO-14224.
- "Softwares" comerciais da DNV/JARDINE, RELIASOFT, etc e aplicativos da atividade.
- Noções sobre o potencial de aplicação através da aplicação de exercicios pós-aula.

b. Programa (4horas)

Parte 1 (1hora) - 08h às 09h

- 1 Conceitos Básicos
- 1.1 Aspectos gerais
- 1.2 Medidas de Confiabilidade, disponibilidade & mantenabilidade (RAM)
- 1.3 Falha, modo de falha, causa e mecanismo de falha
- 1.4 Taxa de falha (ref. tempo ou demanda) e taxa de reparo

SALVADOR SIMÕES FILHO

- Engenheiro de Equipamentos Eletricista, Especialista em Engenharia de Confiabilidade e Riscos.
- Sólida formação acadêmica. Experiência em projetos e instalações submarinas offshore, com ênfase em Engenharia de Confiabilidade e Avaliação de Riscos de sistemas submarinos.
- Engenheiro eletricista (UFRJ, 1979), MBE em engenharia do meio ambiente (UFRJ, 1991), mestre em engenharia de produção (COPPE/UFRJ, 1996) e doutor em engenharia civil (COPPE/UFRJ, 2006 – Interdisciplinar).
- Trabalhou durante 31 anos na Petrobras (no momento está aposentado), sendo 25 anos em atividades de engenharia de confiabilidade e avaliação de riscos, Certificação de Profissional de Confiabilidade (CRP) fornecido pela Reliasoft Corporation (n°15362), membro IEEE Reliability Society (n°93230866) e CREA Cart. Prof. RJ-

1.5 – Principais funções e estatísticas

1.6 – MTTF, MTTR e MTBF, distribuição exponencial e taxa de falha constante

1.7 – Intervalo de confiança

Parte 2 (2horas) - 09h às 11h

2 – Modelagem Básica de Confiabilidade

2.1 – Aspectos gerais

2.2 – Confiabilidade, disponibilidade e mantenabilidade de elementos individuais

2.3 – Confiabilidade de sistemas

2.3.1 - FMEA/FMECA

2.3.2 – Análise de diagrama de blocos (RBDA)

2.3.3 – Análise de árvore de falhas (FTA)

2.3.4 - Análise de Markov (MKA)

2.3.5 – Análise de árvore de eventos (ETA)

2.3.6 – Análise de confiabilidade, disponibilidade e mantenabilidade (RAM)

Parte 3 (1hora) - 11h às 12h

3 - Modelagem Outras

3.1 – Noção de confiabilidade humana (HRA)

3.2 – Noção de custeio do ciclo de vida (LCCA)

3.3 – Noção de manutenção centrada em confiabilidade (RCM) e inspeção baseada em risco (RBI)

3.4 – Coleta e tratamento de dados

3.4.1- Norma ISO-14224

3.4.2 - Banco de dados

3.4.3 - Outros bancos de dados

3.5 - Softwares e aplicativos

3.6 – Exercícios pós-aula

043941/D, Reg. 1981121125, RNP № 200138356-8.

7 GERENCIAMENTO DE MUDANÇAS

(4 hs)

- 1. O que é uma Mudança? Conceitos e Tipos
- 2. Porque Gerenciar Mudanças? Riscos associados aos diferentes tipos
- 3. Sistema de Gerenciamento de Riscos e o elemento de MOC
- 4. Infraestrutura necessária para criar um sistema de MOC
- 5. Indicadores proativos e reativos associados ao elemento de MOC
- 6. Papéis e Responsabilidades
- 7. Procedimento Gerenciamento de Mudanças
- 8. Auditoria de MOC

AMÉRICO DINIZ CARVALHO NETO

CEO da RSE Consultoria Gerenciamento de Riscos Empresariais

Engenheiro Eletricista e de Segurança; UFBA -1984

Fellow em Segurança de Processos pelo *CCPS –USA*

Membro Emeritus do CCPS - USA Mestre em Gestão Empresarial – Confiabilidade Humana -Impacto do Erro e dos Fatores Humanos nas Perdas e Acidentes na Indústria Química e Petroquímica –UFBA;

"Professional and Life Coaching" —Bras Coaching —2014-2015

Ergonomista em Ergonomia

Contemporânea UFRJ—COPPE -2000-02 Pós Graduação em Engenharia

Econômica -1992

Especialista em Instrumentação e Controle de Processos e sistemas de

Segurança; 1980-86 Especialização em TPI

Especialização em TPM (Total Productivity Management) –USA

Detroit; 1994

Especialização em Sistemas de Gerenciamento de Segurança de

		Processos e Ambiental baseado nas normas ISO, OSHA, NFPA e EPA; Especialista em investigação de acidentes e incidentes industriais com formação na Appolo SchoolUSA; 2005; Formação em Corporate Lead Auditor pela Dupont; Auditor Corporativo da Braskem em SSMA e Segurança de Processo; "Coaching management system" - Modelo de Gestão High Performance Work System —DuPont.
8	NOÇÕES BÁSICAS EM ANÁLISE DE CAUSA RAIZ	MARCELO HAICK
(4 hs)	 a. Objetivo: Oferecer conhecimento e habilidades necessárias para o método Sologic ACR, através de exposição teórica, exercícios em grupo e demonstração do software de Análise da Causa Raiz. b. Programação: Introdução a Análise Estruturada de Problemas (20 min) Visão Geral da Análise da Causa Raiz (40 min) Etapas de método estruturado (60 min) Exercício com o grupo (1 h e 30 min) Conclusões (30 min) 	 Diretor da Sologic South America. Especialista em ACR, realiza investigações e fornece serviços de consultoria e treinamento em toda a América do Sul. É Médico do Trabalho, formado em Medicina Humana pela Faculdade de Ciências Médicas de Santos, em 1982. Exerce suas Atividades Profissionais como Diretor-Presidente da H.S.O. – Sistemas de Gestão em Saúde, Segurança e Meio Ambiente e Diretor da Sologic South América - Análise da Causa Raiz.
9 (4 hs)	O TEOREMA DE BAYES E O CLASSIFICADOR INGÊNUO DE BAYES a. Objetivos: 1) Apresentar as diferentes formas do Teorema de Bayes e algumas das suas aplicações para a solução de problemas encontrados na vida cotidiana; 2) O Classificador Ingênuo de Bayes (Bayes Naive Classifier) é um dos classificadores mais usados atualmente em aplicações de aprendizado de máquina ("machine learning"); neste minicurso é feita uma breve introdução a este classificador e sua aplicação para casos práticos ilustrativos. b. Programa: 1. Algumas formas de explicação do Teorema de Bayes 2. As expressões do Teorema de Bayes 3. Primeira aplicação: previsão do tempo 4. Segunda aplicação: decidindo uma escolha em um jogo 5. Terceira aplicação: confiabilidade do sensor e o detecção de falha 6. Quarta aplicação: atualizando dados de falha 7. Distribuição de probabilidade conjunta 8. Distribuição marginal 9. O classificador ingênuo de Bayes (CIB) 10. Aplicação do CIB com uma única variável 11. Aplicação do CIB com variáveis múltiplas 12. Exemplos de aplicação do CIB	LUIZ FERNANDO SEIXAS DE OLIVEIRA - Especialista em análise de riscos e confiabilidade com mais de 35 anos de experiência - Eng. Civil pela UFF (1971) MS e PhD pela Univ. of California Berkeley (1979) - Eng. de Segurança pela UFF (2004) - Certified Functional Safety Expert (CFSE), desde 2009 - Professor da Eng. Nuclear da COPPE/UFRJ por 13 anos - Fundador da Principia Engenharia, adquirida pela DNV GL em 2000 - Na DNV GL foi Gerente do Departamento de Riscos na A.L. e Gerente Regional da Europa Mediterrânea, tendo participado de um grande número de projetos no Brasil e no exterior. - Atualmente é Vice-Presidente e Gerente do Centro de P&D da DNV GL no Rio de Janeiro. - Publicou cerca de 140 trabalhos em revistas e congressos nacionais e internacionais - É Presidente da ABRISCO (2015-2016 e 2017-2018) e membro do Board of Directors da IAPSAM

10 (4 hs)

RISCOS EM DUTOS

- 1. Introdução ao Tema -Duração 50 minutos
 - 1.1 Apresentação de definições e conceitos
 - 1.2 Justificativa para que sejam avaliados os riscos das operações de dutos
 - 1.3 Breve apresentação sobre legislação ambiental no Brasil
- 2 Etapas da Análise Quantitativa de Riscos (AQR) em dutos Duração: 3:10 horas
 - 2.1 Mapeamento dos Pontos Notáveis
 - 2.2 Análise Preliminar de Perigos
 - 2.3 Análise das Consequências
 - 2.4 Estimativa de frequência de falha de dutos
 - 2.5 Cálculo do Risco
 - 2.6 Avaliação dos Riscos
 - 2.7 Medidas de Mitigação dos Riscos

DOUGLAS THIAGO ALVES

- Graduação em Eng. Química pela UFMG (2006)
- Especialização em Eng. de Processamento de Petróleo pela UERJ (2008) e em Avaliação e Gerenciamento de Riscos pela UFRJ (2009)
- Mestrado em Tecnologia de Processos Químicos e Bioquímicos pela UFRJ (2013)
- Pós-graduação em Eng. de Dutos com ênfase em Análise de Riscos (PGCert Pipeline Engineering) pela Univ of Newcastle, Inglaterra (2014).
- Atualmente cursa Doutorado em Sistemas de Gestão Sustentáveis com foco em Gestão de Riscos em Dutos na UFF (previsão de conclusão em 2020).
- Atuou na área de Análise de Riscos Industriais de 2008 a 2015 como empregado da Petrobras, dando suporte técnico tanto durante os processos de licenciamento de empreendimentos da companhia quanto na seleção de traçados de dutos e de layout/localização de plantas de processo, com foco em risco ao público externo.
- Atualmente atua na área de Gestão Integrada de Continuidade de Negócios e de Riscos Operacionais da Petrobras.